教案中应包含对教学效果的评估,以便教师进行自我反思和改进,教案的设计应考虑到多种教学资源的使用,丰富学生的学习体验,下面是满满范文网小编为您分享的全等三角形教案8篇,感谢您的参阅。
全等三角形教案篇1
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养同学的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发同学热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养同学勇于创新,多方位审视问题的创造技巧。
教学重点:
全等三角形的.性质。
教学难点:
找全等三角形的对应边、对应角
教学用具:
直尺、微机
教学方法:
自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般同学都能发现这两个三角形是完全重合的。
(2)同学自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让同学用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由同学观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1)投影显示题目:
d、ad∥bc,且ad=bc
分析:由于两个三角形完全重合,故面积、周长相等。至于d,因为ad和bc是对应边,因此ad=bc。c符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:ae∥cf
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴ae∥cf
说明:解此题的关键是找准对应角,可以用平移法。
分析:ab不是全等三角形的对应边,
但它通过对应边转化为ab=cd,而使ab+cd=ad-bc
可利用已知的ad与bc求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求同学独立思考后回答,其它同学补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强同学的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让同学自由表述,其它同学补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业p55#2、3、4
b.上交作业(中考题)
全等三角形教案篇2
【教学目标】
1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2、继续培养学生画图、实 验,发现新知识的能力。
【重点难点】
1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;
2、重点:灵活运用sss判定两个三角形是否全等。
【教学过程 】
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ abc与△ 全等吗? 你是如何判定的。
(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等。)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全
等。满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究。
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 ,分别为 ,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。
步骤:
(1)画一线段ab使 它的长度等于c(4.8cm)。
(2)以点a为圆心,以线段b(3cm)的长为半径画圆弧;以点b为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点c.
(3)连结ac、bc.
△abc即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的 结论
请你结合画图、对比,说说你发现了什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的'。 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等。简写为边边边,或简记为(s.s.s.)。
2、问题2:你能用 相似三角形的判定法解释这个(sss)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)
3、问题3、你用这个sss三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
4、范例:
例1 如图19.2.2,四边形abcd中,ad=bc,ab=dc,试说明△abc≌△cda. 解:已知 ad=bc,ab=dc , 又因为ac是公共边,由(s.s.s.)全等判定法,可知 △abc≌△cda
5、练习:
6、试一试:已知一个三角形的三个内 角分别为 、 、 ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?
(所画出的三角形都是相似的 ,但大小不一定相 同)。
三个对应角相等的两个三角形不一定全等。
三、加强练习,巩固知识
1、如图, , ,△abc≌△dcb全等吗?为什么?
2、如图,ad是△abc的中线, 。 与 相等吗?请说明理由。
四、小结
本节课探讨出可用(sss)来判定两个三角形全等,并能灵活运用( sss )来判定三角形全等。三个角对应相等的两个三角不一定会全等。
五、作业
全等三角形教案篇3
教材分析:
?三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的.玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:sas 、 sss、 asa、 aas 、 hl。
复习回顾:练习1、将两根钢条aa/、bb/中点o连在一起,使aa/、bb/绕着点o自由转动,做成一个测量工具,则a/b/的长等于内槽宽ab,判定△oab≌△oa/b/现由( )
练习2、已知ab//de,且ab=de,
(1)请你只添加一个条件,使△abc≌△def,
你添加的条件是
(2)添加条件后,证明△abc≌△def?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片abc、def,再将这两张三角形纸片摆成右图的形式,使点b、f、c、d处在同一条直线上,p、m、n为其他直线的交点。
(1)求证:ab⊥ed
(2)若pb=bc,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中ab与ed有怎样的位置关系?同学生猜想一下结果。
生甲:ab垂直ed
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△abc≌△def,故∠a=∠d,又∠anp=∠dnc,所以,∠apn=∠dcn=900,即ab⊥ed。
(根据学生的回答,教师板演)
师:若pb=bc,找出右图中全等三角形,看看谁能找得最快?
生丁:△pbd≌△cba(asa)
师:板演,由ab⊥ed,可得到∠bpd=900,∠bpd=∠cba,∠a=∠d,pb=bc,故有△pbd≌△cba(asa)。
师:还有其他三角形全等吗?
生:有,我连接bn,由勾股定理得pn=cn,就不难得到△apn≌△dcn。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知op为∠aob平分线,请你利用该图画一对以op所在直线为对称轴的全等三角形。
教师在黑板上画好∠aob和直线op,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线oa、ob上找到一对关于op对称的点就可以了。
(2)利用上图作全等三角形方法,在△abc中,∠b=600,∠abc是直角,ad、ce是∠bac,∠dca的平分线,ad、ce相交于f,请判断fe与fd间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出ef、fd的长度,看看ef与fd长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。
生:在ac上取点h,使ah=ae,则△aef≌△ahf则ef=fh
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而ef、fd所在两个三角形显然不全等,又ad是平分线,在ac上找出e关于ad有对称点h得到△aef≌△ahf。
师:这样只能得到ef=fh。
生:再证明△fhc≌△fdc。
生:先求出ad、ce是角平分线∠apc=1200,则∠dpc=∠epa=∠aph=600,所以∠hpc=
∠dpc=600,pc=pc,∠3=∠4,因为△hcp≌△dcp(asa)所以pd=ph。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠acb不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。
全等三角形教案篇4
教学建议
直角三角形全等的判定
知识结构
重点与难点分析:
本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:
(1)由“先教后学”转向“先学后教
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教法建议:
由“先教后学”转向“先学后教”
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的`文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教学目标:
1、知识目标:
(1)掌握已知斜边、直角边画直角三角形的画图方法;
(2)掌握斜边、直角边公理;
(3)能够运用hl公理及其他三角形全等的判定方法进行证明和计算.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过知识的纵横迁移感受数学的系统特征。
教学重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:灵活应用五种方法(sas、asa、aas、sss、hl)来判定直角三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?
这个问题让学生思考分析讨论后回答,教师补充完善。
2、公理的获得
让学生概括出hl公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有斜边和一条直角边对应相等的两个直角三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、判定两个直角三角形全等的方法。
(3)特殊三角形研究思想。
3、公理的应用
(1)讲解例1(投影例1)
例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。
分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。
证明:(略)
(2)讲解例2。学生分析完成,教师注重完成后的点评。)
例2:如图2,△abc中,ad是它的角平分线,且bd=cd,de、df分别垂直于ab、ac,垂足为e、f.
求证:be=cf
分析: be和cf分别在△bde和△cdf中,由条件不能直接证其全等,但可先证明△aed≌△afd,由此得到de=df
证明:(略)
(3)讲解例3(投影例3)
例3:如图3,已知△abc中,∠bac=,ab=ac,ae是过a的一条直线,且b、c在ae的异侧,bd⊥ae于d,ce⊥ae于e,求证:
(1)bd=de+ce
(2)若直线ae绕a点旋转到图4位置时(bd<ce),其余条件不变,问bd与de、ce的关系如何,请证明;
(3)若直线ae绕a点旋转到图5时(bd>ce),其余条件不变,bd与de、ce的关系怎样?请直接写出结果,不须证明
学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。
4、课堂小结:
(1)判定直角三角形全等的方法:5个(sas、asa、aas、sss、hl)在这些方法的条件中都至少包含一条边。
(2)直角三角形判定方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
5、布置作业:
a、书面作业p79#7、9
b、上交作业p80#5、6
板书设计:
探究活动
直角形全等的判定
如图(1)a、e、f、c在一条直线上,ae=cf,过e、f分别作de⊥ac,bf⊥ac,
若ab=cd求证:bd平分ef。若将△dec的边ec沿ac方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。
全等三角形教案篇5
教学目标
一、知识与技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法
通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点
1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。 教学难点 正确寻找全等三角形的对应元素。
教学关键
通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备: 教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个
教学过程设计
一、全等形和全等三角形的概念
(一)导课:
教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义
象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]
动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的`图形有什么关系?你怎么知道的? [板书:能够完全重合]
命名:给这样的图形起个名称————全等形。[板书:全等形]
刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义
动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。 定义全等三角形:能够完全重合的两个三角形,叫全等三角形。
(四)出示学习目标
1、 知道什么是全等形,什么是全等三角形。
2、 能够找出全等三角形的对应元素。
3、会正确表示两个全等三角形。
4、掌握全等三角形的性质。
二、全等三角形的对应元素及表示
(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。
(二)检测:
1、动手操作
以课本p91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)
思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?
归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。
2、全等三角形中的对应元素
(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)
(1)对应的顶点(三个)———重合的顶点
(2)对应边(三条)———重合的边
(3)对应角(三个)——— 重合的角
归纳:
方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。
3、用符号表示全等三角形
抽学生表示图一、图二、三的全等三角形。
4、全等三角形的性质
思考:全等三角形的对应边、对应角有什么关系?为什么?
归纳:全等三角形的对应边相等、对应角相等。
请写出平移、翻折后两个全等三角形中相等的角,相等的边。
全等三角形教案篇6
【教学目标】
知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“sas”条件,了解三角形的稳定性.能运用“sas”证明简单的三角形全等问题.
过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.
情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.
教学重点:三角形全等的条件.
教学难点:寻求三角形全等的条件.
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边后的一节课、将中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。
课前准备:全等三角形纸片、三角板、
【教学过程】:
一、创设情境,导入新课
[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?
[生]三内角、三条边、两边一内角、两内角一边.
[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.
(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?
[生]两种.
1.两边及其夹角.
2.两边及一边的对角.
[师]按照上节方法,我们有两个问题需要探究.
(二)探究1:先画一个任意△abc,再画出一个△a/b/c/,使ab=a/b/、ac=a/c/、∠a=∠a/(即保证两边和它们的夹角对应相等).把画好的三角形a/b/c/剪下,放到△abc上,它们全等吗?
探究2:先画一个任意△abc,再画出△a/b/c/,使ab=a/b/、ac=a/c/、∠b=∠b/(即保证两边和其中一边的对角对应相等).把画好的△a/b/c/剪下,放到△abc上,它们全等吗?
学生活动:
1.学生自己动手,利用直尺、三角尺、量角器等工具画出△abc与△a/b/c/,将△a/b/c/剪下,与△abc重叠,比较结果.
2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.
教师活动:
教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.
二、探究
操作结果展示:
对于探究1:
画一个△a/b/c/,使a/b/=ab,a/c/=ac,∠a/=∠a.
1.画∠da/e=∠a;
2.在射线a/d上截取a/b/=ab.在射线a/e上截取a/c/=ac;
3.连结b/c/.
将△a/b/c/剪下,发现△abc与△a/b/c/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“sas”).
小结:两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“sas”.
如图,在△abc和△def中,
对于探究2:
学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:
1.画∠db/e=∠b;
2.在射线b/d上截取b/a/=ba;
3.以a/为圆心,以ac长为半径画弧,此时只要∠c≠90°,弧线一定和射线b/e交于两点c/、f,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△abc全等的
也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.
归纳总结:
“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:
两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“sas”)
三、应用举例
[例]如图,有一池塘,要测池塘两端a、b的距离,可先在平地上取一个可以直接到达a和b的.点c,连结ac并延长到d,使cd=ca.连结bc并延长到e,使ce=cb.连结de,那么量出de的长就是a、b的距离.为什么?
[师生共析]如果能证明△abc≌△dec,就可以得出ab=de.
在△abc和△dec中,ac=dc、bc=ec.要是再有∠1=∠2,那么△abc与△dec就全等了.而∠1和∠2是对顶角,所以它们相等.
证明:在△abc和△dec中
所以△abc≌△dec(sas)
所以ab=de.
1.填空:
(1)如图3,已知ad‖bc,ad=cb,要用边角边公理证明△abc≌△cda,需要三个条件,这三个条件中,已具有两个条件,一是ad=cb(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知ab=ac,ad=ae,∠1=∠2,要用边角边公理证明△abd≌ace,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
四、练习
1.已知:ad‖bc,ad=cb(图3).
求证:△adc≌△cba.
2.已知:ab=ac、ad=ae、∠1=∠2(图4).
求证:△abd≌△ace.
五、课堂小结
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
六、布置作业
必做题:课本p43——44页习题12.2中的第3,选做题:第4题题
七、板书设计
教学反思
本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式在练习中指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
全等三角形教案篇7
一、引言
根据《全日制义务教育数学课程标准》具体目标,结合学生已有的知识经验和认知水平,提供具有探究性的问题,让学生主动参与到解决问题的数学活动中,理性思考、大胆猜测,合理推断,从何培养学生的逻辑思维能力,发展学生的数学观念和数学思想,使学生形成良好的思维品质,达到启迪思维、开发智力的目的。此案例就构造三角形全等为例,谈谈在课堂教学中如何发展学生的直觉思维,培养其创新意识。
二、全等三角形知识点的地位和作用
全等三角形体现的是一种十分重要的保距变换,许多图形中线段之间,角之间的相互关系经常通过三角形全等来判断、得出,三角形全等还是基本尺规作图的根本依据。由于全等三角形的判定及对全等三角形边、角之间的关系处理涉及推理,因此通过学习全等三角形知识对培养学生的逻辑推理和表达能力有着非常重要的作用。
三、全等三角形判定教学例子
假设情景:
某次组织学生参加生日聚会,需要裁剪小旗帜,如何让小旗帜和第一个剪裁的大小完全相同呢?
由学生尝试把实际问题转化为数学问题:怎样画一个三角形与已知三角形全等?在解决这个问题的过程中,鼓励学生大胆猜想,激发同学们的主动性和创造性。学生可能会提出:测出参照三条边的长度,或量出三个角的度数,或测量一条边、一个角的方案等。对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过已知三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。学生的思维在此产生碰撞:谁的想法可行呢?要使两个三角形全等到底需要满足哪些条件?进一步明确本节课研究的方向,引出课题。
学生在探究过程中会根据已有的知识积累,利用“几何画板”作图探究,举出反例来说明已知一个条件或两个条件画出的三角形与已知三角形不一定全等,这时教师鼓励学生画出尽可能类型的反例,并引导学生将举出的反例进行分类,初步体验分类的数学思想,为下一步已知三个条件画出三角形与已知三角形全等打下基础。
在讨论过程中,教师以合作者的身份深入到小组中,与同学交流,了解学生的探究过程并给予适当点拨,然后全班交流小组讨论结果,归纳出可能的分类情况:
按已知三角形边和角的个数可分为:三边、三角、两角一边、两边一角。
个别小组可能会提出根据边和角的位置关系,两边一角可继续分为两边及夹角和两边及一边对角,两角一边可继续分为两角及夹边和两角及一角对边。
对学生的严谨求实的学习态度教师要给予充分的可定和赞赏。
在此问题的解决过程中,不仅训练了学生将知识分类,并使学生充分感受到团队合作的重要意义和交流沟通的重要性。在探索过程中,对于三边、三角、两角及夹边、两边及夹角这四种情况学生很容易验证,而只有两角及一角对边和两边及一边对角条件是讨论的焦点。
这时,教师留给学生充分的思考时间,经过交流,学生能够得出利用三角形的内角和定理,两角及一角对边的条件可以转化为两角及夹边的情况。而在画两边及一边对角的三角形时,学生可能得出这样几种结果:
(1)画出的三角形与原三角形全等;(2)画出的三角形与原三角形不全等;(3)画出了两个三角形;
此时,留给学生更多的时间,充分讨论,达成共识:此条件能够得到两个不同的三角形;为突破该难点,教师利用画板展示作图过程,深入分析产生两个三角形的原因,使学生进一步明确两边及一边对角不能作为判定三角形全等的条件。在此过程中,教师对个别学生富有个性的学习表现给予肯定和激励,让同学们感受到成功的喜悦。
难点的突破力求发挥自主学习的优越性,放手让学生去探索,在师生互动、生生互动的氛围中使学生思维的`灵活性和创造性得到发展。
最后展示实验的结果,得出一般结论:根据三边、两边及夹角、两角及夹边、两角及一角对边这四种条件画出的三角形与原三角形全等。
四、全等三角形的教学反思
在三角形全等的教学过程中,因有实例比较,学生对三角形全等的概念理解应该不成问题,从整个初中学习过程中来说,三角形全等知识学习是学好其它几何知识的起步点,在八和九年级几何学习中都离不开三角形全等有关知识,如旋转、轴对称、园、坐标系等,但在学习中学生也存在两个主要问题。
(1)三角形全等的说理表达
逻辑语言表达这个过程的训练需要逐步进行,也就是题目要简单点,叙述过程从两句即一个因果开始训练书写,再到两个因果训练,两个因果的书写过程时间要长一些,因为两个因果会写了,再多几个因果也不太会出问题了,当然在注意书写要求的同时还要强调理解逻辑关系
(2)几何逻辑思维能力培养
三角形全等知识在培养学生逻辑语言的同时,更重要的是在培养学生的逻辑思维能力、空间想象能力,在这一点上学生间的差异比较明显,要缩小差距共同提高,培养的关键点是要让学生在头脑中逐渐有几何图形的图形感,能在大脑中思考几何图形中的问题,要做到这一点,第一步要让学生多用实物例子,多动手操作,多回忆见到过的类似图形,培养图形感,第二步要做到能在复杂图形中分解目标图形,学会动态思维,只有这样才能在复杂图形中捕捉、筛选目标图形,培养空间思维能力。
全等三角形教案篇8
全等三角形教案
1.只给定一个角时:
2.给出的两个条件可能是:一边一内角、两内角、两边.
可以发现按这些条件画出的三角形都不能保证一定全等.
五、课堂小结
我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(sss) 边角边(sas) 角边角(asa) 角角边(aas)
六、布置作业
必做题:课本p44页习题12.2中的第6,选做题:第11题
七、板书设计
课 题 :12.2.4三角形全等的判定《4》
?教学目标】:
知识与技能:直角三角形全等的条件:“斜边、直角边”.
过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的'条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.
情感态度与价值观:通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边.边角边.角边角边后的一节课、根据直角三角形的特点、探讨出 “hl”.学生一定能理解。
课前准备 全等三角形纸片、三角板、
?教学过程】:
一、提出问题,复习旧知
1、判定两个三角形全等的方法: 、 、 、
2、如图,rt△abc中,直角边是 、 ,斜边是
3、如图,ab⊥be于c,de⊥be于e,
(1)若∠a=∠d,ab=de,
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
(2)若∠a=∠d,bc=ef,
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
(3)若ab=de,bc=ef,
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
(4)若ab=de,bc=ef,ac=df
则△abc与△def (填“全等”或“不全等” )
根据 (用简写法)
二 、创设情境,导入新课
如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放)
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
(1)[生]能有两种方法.
第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“aas”可以证明两直角三角形是全等的.
第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“asa”或“aas”,可以证明这两个直角三角形全等.
可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.
[师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?
三、探究
做一做:
已知线段ab=5c,bc=4c和一个直角,利用尺规做一个直角三角形,使∠c=90°,ab作为斜边.做好后,将△abc剪下与同伴比较,看能发现什么规律?
(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体演示,激发学习兴趣).
作法:
第一步:作∠mcn=90°.
第二步:在射线cm上截取cb=4c.
第三步:以b为圆心,5c为半径画弧交射线cn于点a.
第四步:连结ab.
就可以得到所想要的rt△abc.(如下图所示)
将rt△abc剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.
可以验证,对一般的直角三角形也有这样的规律.
探究结果总结:
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“hl”).
[师]你能用几种方法说明两个直角三角形全等呢?
[生]直角三角形也是三角形,一般来说,可以用“定义、sss、sas、asa、aas”这五种方法,但它又具有特殊性,还可以用“hl”的方法判定.
[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.
四、例题:
[例1]如图,ac⊥bc,bd⊥ad,ac=bd. 求证:bc=ad.
分析:bc和ad分别在△abc和△abd中,所以只须证明△abc≌△bad,就可以证明bc=ad了.
证明:∵ac⊥bc,bd⊥ad
∴∠d=∠c=90°
在rt△abc和rt△bad中
∴rt△abc≌rt△bad(hl)
∴bc=ad.
[例2]有两个长度相等的滑梯,左边滑梯的高ac与右边滑梯水平方向的长度df相等,两滑梯倾斜角∠abc和∠dfe有什么关系?
[师生共析]∠abc和∠dfe分别在rt△abc和rt△def中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.
证明:在rt△abc和rt△def中 又∵∠def+∠dfe=90°
∴∠abc+∠dfe=90° 所以rt△abc≌rt△def(hl)
∴∠abc=∠def
即两滑梯的倾斜角∠abc与∠dfe互余.
五、课时小结
至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义 2.边边边(sss) 3.边角边(sas)
4.角边角(asa) 5.角角边(aas) 6.hl(仅用在直角三角形中)
六、布置作业
必做题: 课本p44页习题12.2中的第7,8,选做题:12,13题
七、板书设计
会计实习心得体会最新模板相关文章:
★ 初中音乐教案8篇
★ 折衣服教案8篇
★ 端午教案反思8篇
★ 法律战教案8篇
★ 触摸墙教案8篇
★ 社会领域教案8篇
★ 拼音教学教案8篇